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Periodic orbit–Quantum mechanical investigation of the inversion
mechanism of Ar 3

Raul Guantes, Anastasios Nezis,a) and Stavros C. Farantosb)

Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas,
Iraklion, Crete, 711 10, Greece

~Received 20 May 1999; accepted 20 September 1999!

The inversion mechanism of a T-shaped Ar3 is studied both classically and quantum mechanically.
Regular states, localized in the region of the transition state for the inversion of the axial argon atom
are found and are assigned by the symmetric stretch stable periodic orbits which emanate from the
saddle point of the potential. These states inhibit the inversion process. States which promote the
inversion are mainly irregular, but a few of them are localized and they have their nodes
perpendicularly arranged along periodic orbits which originate from saddle node bifurcations. The
two types of periodic orbits, inhibiting and isomerizing, are used to produce distinctly different
spectra and to extract the corresponding eigenfunctions by solving the time dependent Schro¨dinger
equation using a variable order finite difference method@J. Chem. Phys.111, 10827 ~1999!,
preceding paper#. © 1999 American Institute of Physics.@S0021-9606~99!30247-6#
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I. INTRODUCTION

One elementary chemical reaction is the inversion o
molecule. Generally, inversion may be seen as an isome
tion reaction between two equivalent minimum energy c
formations which correspond to two symmetric minima
the potential energy surface~PES!. Isomerization occurs by
exciting the molecule to a vibrational state which has app
ciable probability amplitude in both minima. At energie
where the molecule isomerizes the motions of atoms are
pected to be irregular because of the nonlinearity and c
pling of the potential function1 close to and above the barrie
of isomerization.

The progress of high resolution spectroscopy at exc
vibrational states in the last years reveals that, contrary to
expectations, spectra at high energies can be analyzed
simple spectroscopic models in reduced dimension spa2

These models are described by resonance Hamilton
which have regular localized eigenfunctions, and this
plains the regular patterns frequently found in vibrationa
excited spectra.

Semiclassical approximations seem to provide a satis
tory theory for the localization of the wave functions. Pa
ticularly, it has been found that periodic orbits may be us
as diagnostic tools for the localization in quantu
mechanics.1 Regular wave functions have recognizable no
structures which follow the patterns of periodic orbits.3 For
high vibrational excitations of particular interest are tho
periodic orbits which emerge from saddle node~SN! bifur-
cations. These periodic orbits appear suddenly in phase s
as pairs of one stable and one unstable family. This is
portant, since the emergence of a SN bifurcation signals
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existence of stable domains in phase space embedded
usually chaotic region. The correspondence of stable p
odic orbits to quantum eigenfunctions4 dictates quantum me
chanical localization as well.

In double well potentials, periodic orbits which conne
the two minima are mainly associated with SN bifurcation
We have shown this for bound5,6 and unbound7 molecular
systems. A recent example with a spectroscopic signature
the SN states is the HCP molecule.Dispersed fluorescenc
and stimulated emission pumpingvibrational-rotational
spectroscopy8,9 of the bending mode has shown that the r
tational constants are different for the normal mode ty
bending states~states associated with the minimum of th
potential! and the isomerizing bending states. Althou
ab initio calculations for the ground electronic state of HC
predict a saddle point for the CPH conformation and no
minimum, it has been demonstrated that the vibrational st
which lead loosely speaking to isomerization of the hyd
gen atom from the carbon to phosphorus side are assoc
with SN periodic orbits.10–12

Homonuclear triatomic molecules, A3 , can also show
inversion of the axial atom with respect to the A2A bond. In
this case, the transition state is a collinear configuration w
the axial A atom sitting in the middle of the A2A bond. An
example is H3

1 , for which it has been shown that localize
isomerizing states exist and are marked by similar types
periodic orbit named ‘‘horseshoe.’’13

The van der Waals system Ar3 is another example which
can show inversion of the axial Ar atom. The weak forc
among the atoms dictate that the molecule executes flo
irregular motions. Early studies on this system revealed
the trajectories even close to the minimum have posit
Lyapunov exponents.14,15 However, more recent classica
mechanical studies16,17have shown a nonstatistical inversio
dynamics in spite of the fact that the phase space is do
nated by chaotic trajectories above the inversion thresh

,

6 © 1999 American Institute of Physics
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10837J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Inversion of Ar3
Vibrational quantum mechanical calculations for the ro
tionless system have recently been presented by Wright
Hutson.18 What is surprising in these calculations is the reg
larity and localization of a few eigenfunctions above the b
rier of inversion found among irregular eigenstates with
recognizable nodal patterns.

In this article we want to investigate more thorough
the inversion dynamics and spectroscopy of the van
Waals system, Ar3 . Thus, we apply the periodic orb
method~POM! introduced before.1 Families of periodic or-
bits which originate from the saddle point of the potent
function as well as saddle node bifurcations are located
explore the structure of phase space in regions where in
sion takes place. These periodic orbits are then used to g
wave packets which are propagated by solving the time
pendent Schro¨dinger equation. The important role of the in
tial phase of the wave functions~assigned by the momenta o
POs! results in completely different spectra produced at h
energies, where wave packets with the same amplitudes
different phases serve to excite the molecule in differ
modes.

We apply a new algorithm and recent ideas on high
der finite difference method19 to obtain the solutions of the
Schrödinger equation which are then compared with the
sults of fast Fourier pseudospectral calculations. The cur
shape of the potential function leads the finite differen
method to a superior position since it allows us to choose
grid points in an energetically optimum way and to apply t
appropriate boundary conditions. Details of the finite diffe
ence methods are presented in the companion paper.20

II. NUMERICAL DETAILS

Both classical and quantum calculations are perform
for C2v geometries of the three argon atoms using the Ham
tonian:

H5
p1

2

2m1
1

p2
2

2m2
1V~x1 ,x2!. ~1!

x1 is the position of the axial argon atom along a perpendi
lar axis to the middle of the bond length,x2 , of the other two
argon atoms.m1 is the reduced mass of the axial argon ato
with respect to Ar2 and m2 the reduced mass of Ar2 . The
potential function,V(x1 ,x2), is determined from the sum o
the three Ar–Ar interactions. The latter are described by
empirical potential of Aziz and Slaman.21

The same potential has been used by Dumont and Ja16

in a classical statistical study of the inversion dynamics
supports two symmetric minima accessible through
inversion process. The minima are at (x1 ,x2)
5(66.15,7.099)a0 the energy of which is taken to be equ
to zero. The saddle point between these two minima has
collinear geometry of (x1 ,x2)5(0.0,14.19)a0 , and energy
140.38 K above the minimum. The energies are measure
Kelvin.16 The dissociation limit to Ar1Ar2 is 286.415 K. In
Fig. 1 we show contour plots of the potential function co
ering the energy range between 50 and 300 K. In the in
the coordinatesx1 andx2 are defined.
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Methods for locating periodic orbits have been describ
before.22 Usually, a quasi-Newton method is employed
find the proper initial conditions for closing the trajector
However, we are interested in locating families of period
orbits for a range of energies. Thus, continuation meth
are equally important.23 Through continuation of the princi
pal families, i.e., families which emerge from the stationa
points of the potential, we find bifurcations, and gradua
we unravel the structure of phase space for a domain of t
energies. The stability properties of each periodic orbit, i
the behavior of the surrounding trajectories with time, a
then examined by calculating the eigenvalues of the mo
dromy matrix.24,25

Spectra and quantum mechanical wave functions are
culated by solving the time dependent Schro¨ndiger equation
using the Fourier pseudospectral~PS! method26 and a fast
and numerically robust variable order finite difference~FD!
method. Using recurrence relations for the Lagrange inter
lation polynomials a general algorithm for computing a
derivative of a function at arbitrary points and at any order
approximation have been presented by Fornberg.19,27 This
allows us to check systematically the convergence of
spectra by increasing the order of approximation of the s
ond derivatives. It can be shown that FD methods at
infinity order of approximation are equivalent to spect
methods. However, the desired accuracy is achieved fo
nite orders and this makes FD methods competitive to ps
dospectral techniques. As the number of degrees of free
increases the flexibility of choosing the grid points accord
to physical criteria makes FD methods superior to ps
dospectral techniques.20 This is demonstrated even for th
present 2D system for which rectangular grids, usually e
ployed in fast Fourier transform methods, will lead to
inefficient configuration space sampling.

Some ways to optimize grids with FFT algorithms ha
been proposed28 but they are less general and not as easy
handle as a FD procedure. Finite differences not only o
flexibility in grid sampling, a property which is shared wit

FIG. 1. Potential energy contours for the Ar3 molecule between 50 and 30
K ~1 K50.695 cm21). In the inset the molecule with the coordinate syste
is shown.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10838 J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Guantes, Nezis, and Farantos
the discrete variable representation~DVR! Pseudospectra
methods, but also result in having a smaller number of n
zero Hamiltonian matrix elements than DVR.29,30This is also
in the spirit of other local and semilocal methods such as
distributed approximated functionals~DAF!.31 Numerical de-
tails of the implementation of FD method in Ar3 are given in
the next section.

III. RESULTS AND DISCUSSION

A way to represent families of periodic orbits as the to
energy or other control variables change are
continuation/bifurcations~C/B! diagrams. These are plots o
the initial conditions of the periodic orbits or their periods
functions of the total energy. Generally, C/B diagrams rev
the stable and unstable regions of phase space, and thus
provide global information about the dynamics of the m
ecule. Their importance in molecular systems stems in
expected correspondence among stable and short perio
riodic orbits and quantum mechanical eigenfunctions.

Continuation/bifurcation diagrams are constructed
each stationary point of the potential function. The existe
of the principal families of POs which originate from th
stationary points are guaranteed by Weinstein32 and Moser33

theorems. Since here we are interested in the inversion
namics of Ar3 , we discuss the C/B diagram of the sadd
point of the potential.

There is one principal family which emerges from t
saddle point. In Fig. 2 we plot a projection of th
continuation/bifurcation diagram, the initialx1 coordinate of
each located periodic orbit versus the total energy. Cont
ous lines denote stable POs and dashed lines unstable
The periodic orbits of the principal family correspond to t
symmetric stretch of the three atoms in collinear configu
tion. The principal family is denoted byS in Fig. 2 and is
initially unstable in the direction ofx1 axis. Interestingly
enough, this family turns to stable POs about 10 K above
saddle point. At the critical energy where theS turns from

FIG. 2. Continuation/bifurcation diagram for the principal family emanat
from the saddle point of the potential~S family! and some saddle node PO
~I families!. Solid lines denote stable POs and dashed lines unstable o
Downloaded 12 Nov 2002 to 161.111.20.5. Redistribution subject to AI
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unstable to stable two new unstable families the (S1A,S1B)
are born.24,25,34The stability island which is formed aroun
the stable periodic orbits makes the isomerizing chaotic
jectories to be trapped around this region of phase space
a long time, something which is manifested in the invers
dynamics with the deviations from the statistic
behavior.15,16

In the diagram of Fig. 2 we can see the bifurcation
other families as well as the change ofS back to unstable
POs at energy 390 K. Plots of representative POs are sh
in Fig. 3 and initial conditions for one periodic orbit of eac
family are stored in Table I. It is interesting to note th
simultaneous bifurcation of four new families,S3. TheS3A
andS3C POs have the same projection on the (x1 ,x2) plane
but they have a reflection symmetry (p1,2→2p1,2) when
they are projected on a coordinate-momentum plane.

The other class of POs with physical interest is th
which emerges from saddle node bifurcations and a few
them are shown in Fig. 2. We use the symbolsI0, I1, I2, etc.
to denote their association with the inversion. Indeed,
saddle node POs are those which connect the two min
and the symmetric ones can easily be found. They app
always with two branches, one stable and one unstable.
stable one may turn to unstable shortly after its genera

s.

FIG. 3. Representative periodic orbits projected on the configuration pl
The potential contours at the same energy with the PO are also shown
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10839J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Inversion of Ar3
TABLE I. EnergiesE in Kelvin, periodsT in time units, and distances in Bohrs for selected periodic orbits.l is the real part of the eigenvalue of th
monodromy matrix. 1 time unit5 7.638 185 ps.

E x1 x2 p1 p2 T l

S 355.193 020 0.0 14.186 500 0.0 7.041 294 0.436 900 20.618 740
S1A 150.009 681 0.884 718 14.186 500 0.351 702 1.417 406 0.398 700 1.271 29
S1B 150.009 681 20.884 718 14.186 500 20.351 702 1.417 406 0.398 700 1.271 292
S2A 240.391 374 1.007 793 14.186 500 1.566 077 4.586 023 1.493 700 0.987 38
S2B 240.559 217 21.006 265 14.186 500 21.187 946 4.674 673 1.494 700 1.175 233
S3A 355.056 362 0.811 452 14.186 500 2.029 015 6.810 171 1.289 199 0.977 89
S3B 355.054 526 20.727 657 14.186 500 22.353 375 6.733 869 1.290 099 1.228 331
S3C 355.056 362 20.811 452 14.186 500 22.029 015 6.810 171 1.289 199 0.977 896
S3D 355.054 526 0.727 657 14.186 500 2.353 375 6.733 869 1.290 099 1.228 33
S4A 384.132 047 0.012 382 14.186 500 0.063 627 7.500 394 1.187 799 0.999 20
I0 154.214 888 0.136 201 14.245 908 2.0463 811 20.070 579 3.896 184 1.0E106
I1A 192.557 996 21.147 537 14.186 500 2.731 487 2.466 677 1.548 220 20.985 970
I1B 194.143 570 1.118 703 14.186 500 22.565 726 2.672 989 1.604 629 58.861 806
I2A 255.184 832 2.997 235 14.186 500 24.411 452 0.874 535 1.163 199 29.614 324
I2B 255.087 869 21.699 774 14.186 500 25.507 814 1.431 645 1.235 299 40.957 072
I3 264.262 548 20.022 283 7 15.795 319 23.934 940 20.053 452 8 2.405 55 0.13E106
I4A 430.002 365 7.186 733 14.186 500 22.044 194 3.040 661 1.208 299 20.818 486
I4B 427.603 359 10.648 308 14.186 500 0.654 135 1.546 986 4.057 799 3.924 24
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and that depends on the particular system. The real valu
the eigenvaluel of the monodromy matrix given in Table
reveals that theI type POs are mainly unstable.

To estimate the extension of the stable region aro
stable periodic orbits in Fig. 4 we plot Poincare´ surfaces of
sections, one with thex2514.1865a0 and one with x1

50a0 and at energy of 192.4 K. It is interesting to note th
the S periodic orbits have a quite extended stable reg
around them@Fig. 4~a!#. Contrary to that, the stable regio
around theI1A PO is very small. Inspection of other Poin
carésurfaces of sections for several energies reveals a mo
chaotic phase space for energies above the saddle poin
with islands of stability embedded in it.

What is the behavior of quantum mechanics in a mix
chaotic/regular classical phase space as described abov
investigate the quantum dynamics we solve the time dep
dent Schro¨dinger equation. The time propagator is expand
in a series of Chebyshev polynomials.26 The action of the
Laplacian on the wave function is determined both by F
and a variable order FD method.20

FIG. 4. Poincare´ surfaces of section atE5192.4 K, andx2514.1865a0 ~a!
and x150 ~b!. The small stability islands which correspond to the sad
node PO of the familyI1A ~see Fig. 2! have been marked with stars in~a!.
The big island corresponds to the saddle familyS. Note that this stable PO
is the border of the energy shell in panel~b!.
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Two Gaussian wave packets are launched

f~x1 ,x2!5)
k51

2

~2pak
2!21/4exp@2~xk2xk0!2/4ak

2

1 ipk0~xk2xk0!/\#, ~2!

with their centers on two periodic orbits at the same ene
~192.4 K!, one on a S type, (x10,x20,p10,p20)
5(0.0,14.9094, 0.0,2.6473) and (a1 ,a2)
5(0.37378, 0.37173). The second PO is ofI1A type with
(x10,x20,p10,p20)5(0.0,14.9094, 3.0572,0.0) and the sam
widths as theS type. The average energy of the wave pack
is 209.53 K.

The Fourier transforms of the autocorrelation function

I ~E!5
1

2p\E2`

`

exp~ iEt/\!^f~x,0!uf~x,t !&dt, ~3!

are shown in Fig. 5 for theS @Fig. 5~a!# and I1A @Fig. 5~b!#
POs, respectively. These markedly different spectra are
result of two excitations with initial Gaussians having t
same center in configuration space and widths but differ
in their initial phases because of the different momenta
periodic orbits.

Superimposed in Fig. 5~a! we show the calculated spec
tra using the Fourier pseudospectral method and a vari
order FD method (M55, where the orderM is defined from
the N52M11 number of grid points used in the center
equi-spaced grid approximation of the second derivative!.
The two spectra are practically indistinguishable. We us
the same grid spacing and ranges in configuration space
both methods but we generated an optimized grid set in
FD scheme, by selecting those grid points with potential
ergy below a cutoff value,Vc5400 K. This amounts into
reducing the number of grid points from 32 768 in the Fo
rier PS case~rectangular grid! to 13 338 points, which to-
gether with the use of the local approximation allows a
duction in time by a factor of 3. The calculations were do
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10840 J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Guantes, Nezis, and Farantos
with and without absorbing boundary conditions and we
tained the same results. This is a consequence of the lo
ization of the wave packet.

We use the spectral method35 to filter out the eigenfunc-
tions of the most intense peaks in the spectrum of Fig. 5~a!.
Although spectral methods are not as accurate as filter di
nalization techniques,36,37 for the present study where w
seek a qualitative accuracy, these results are adequate
progression of the five major lines are assigned to (0,n)S ,
n50 – 4 states which are found to be regular and well loc
ized in the region of the transition state as can be seen in
6. In this figure we plot the square of the eigenfunction a
the contours cover the range of 0.1–0.9. The labelS is used
to denote their association to theS periodic orbits. We note
that the ground (0,0)S state shows some probability amp
tude along the reaction path, something which we do not
for the excited states. We attribute this to the chaotic reg

FIG. 5. Power spectra obtained from the quantum mechanical propag
of two Gaussian wave packets with the same widths and centers in con
ration space, but differing in phase. In~a! the momentum is given along th
x2 coordinate, and the regular progressions are labeled according to
character of the wave functions~S for excitations along collinear stretchin
in x2 , I for isomerizing type!. With solid lines we plot the spectrum ob
tained using the FFT method, and with dashed lines the one calculated
a 5th order FD scheme. The differences in the spectra are indistinguish
at the scale of the plot. In panel~b! the momentum is given along thex1

coordinate. With the thick line we show the spectrum calculated with re
lution 0.15 K, and with the thin solid line the spectrum at resolution 1.25
Both calculations were carried out with a FD of 5th order.
Downloaded 12 Nov 2002 to 161.111.20.5. Redistribution subject to AI
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of phase space with which the wave function overlaps
these energies~156.5 K!.

The progressions between two successive major line
the spectrum of Fig. 5~a! with decreasing intensities are du
to wave functions of inversion type. In Fig. 7 we present t
(14,0)I and (16,1)I states. Superimposed is anI0 periodic
orbit. Thus, the initial wave packet with a phase along thS
periodic orbit excites not only symmetric stretch states
also the inversion states.

Contrary to that, filtering the eigenfunctions which co
respond to the most intense peaks of the spectrum in
5~b! we find only isomerizing type wave functions~Fig. 8!.

on
u-
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-
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FIG. 6. Regular eigenfunctions ofS type obtained from the spectrum of Fig
5~a!. In the upper left panel the periodic orbit of theS family is superim-
posed.

FIG. 7. Wave functions of isomerizing character obtained from the l
intensity progressions of the spectrum in Fig. 5~a!. They correspond to the
eigenstates with energies 158.26 K~up! and 195.92 K~down!. Superim-
posed on the~14,0!I state there is a saddle node PO (I0) at the same energy
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10841J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Inversion of Ar3
The saddle node periodic orbits of theI2 family seem to
match very well with the (31,0)I and (32,0)I eigenstates.

Comparison with the 3D calculations of Wright an
Hutson18 shows that similar eigenfunctions are obtained
states which correspond to the T-shaped Ar3 . Particularly,
the localization of states in the region of the transition st
~symmetric stretch! as well as the isomerizing regular stat
are reproduced. Thus, we infer that the inclusion of the th
degree of freedom does not alter our conclusions extra
from the T-shaped inversion dynamics.

IV. SUMMARY AND CONCLUSIONS

In the past years several triatomic molecules have b
studied within a program which involves the construction
C/B diagrams of the main families of periodic orbits a
then the quantum mechanical study of the molecule for
comparison of PO results with the wave functions at parti
lar energies. The periodic orbit method~POM! reveals the
dynamical characteristics which are preserved in the qu
tum world. At high excitation energies localized regul
states which correspond to saddle node periodic orbits
now well established.

This program applied to the inversion dynamics of t
van der Waals system of Ar3 surprised us by showing stab
periodic orbits at the region of the transition state~collinear
geometries!. Thus, regular eigenfunctions localized at t
same region in configuration space are extracted by filte
a wave packet propagated in time. The most interest
however, is the production of spectra distinctly different
monitoring the phase of the initial wave packet. It has be
shown that wave packets launched onto orthogonal type
riodic orbits,S and I, overlap with different type eigenfunc

FIG. 8. Filtered eigenfunctions corresponding to the two highest peak
the spectrum of Fig. 5~b!, with energies 211.65 K~up! and 215.58 K~down!
showing very good localization on the saddle node PO of the familyI1A.
Downloaded 12 Nov 2002 to 161.111.20.5. Redistribution subject to AI
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tions, the symmetric stretches which inhibit the inversi
process and those which promote the inversion process
spectively. This picture remains even when the third deg
of freedom is included as recent calculations have show18

We understand that experimentally it is difficult to stud
the spectroscopy of Ar3 . However, there is a rich spectros
copy for H3

1 species for which similar type saddle node p
riodic orbits have been located. We hope that the pres
results will stimulate further studies in this system, althou
we anticipate that the simplicity found in the weakly bou
Ar3 , which has a significantly less dense spectrum, can
be achieved.

In the present study we were able to further test a n
high order finite difference method for solving the time d
pendent Schro¨dinger equation. We demonstrated that
though pseudospectral methods based on FFT are fast
quite accurate for 2D systems, FD methods may give equ
lent accuracies and even become faster because of the
dom in selecting the grid points. The complex configurati
space of Ar3 makes the FD method more appropriate th
the FFT one.
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